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Abstract
We derive functional equations for the eigenvalues of the XXZ model subject
to anti-diagonal twisted boundary conditions by means of fusion of transfer
matrices and by Sklyanin’s method of separation of variables. Our findings
coincide with those obtained using Baxter’s method and are compared to the
recent solution of Galleas. As an application we study the finite size scaling of
the ground-state energy of the model in the critical regime.

PACS numbers: 02.30.Ik, 75.10.Pq, 05.70.Jk

1. Introduction

The quantum inverse scattering method (QISM) [1] provides a powerful framework for the
construction of exactly solvable lattice models with the Yang–Baxter equation defining the
underlying algebraic structure. This structure also serves as the basis for the solution of
the spectral problem, i.e. explicit construction of eigenvalues and eigenstates, for the transfer
matrices of these lattice models, by means of the algebraic Bethe ansatz. The application of
this method, however, is limited to systems with a simple pseudo vacuum state which can be
used as a reference state to generate the complete spectrum by application of the elements
of the Yang–Baxter algebra. There exist methods to compute the spectrum of these systems
which do not suffer these restrictions, e.g. Baxter’s method of commuting transfer matrices [2]
or Sklyanin’s method for separation of variables [3]. In these approaches, the eigenvalues are
encoded into the solutions to certain functional relations which have to be solved in a second
step: using the analytical properties of the transfer matrix its eigenvalues can be parametrized
in terms of the roots of Bethe equations.

Recently, such alternative routes to the solution of the spectral problem of exactly solvable
models have been applied to anisotropic spin chains with open ends and general non-diagonal
boundary fields. Here, the boundary fields break particle number conservation and therefore
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the completely polarized state of spins cannot be used as a pseudo vacuum for the algebraic
Bethe ansatz. Various methods have been used to determine the spectrum of the corresponding
transfer matrix [4–10]. Some of these methods require restrictions on the boundary fields
and/or the bulk anisotropy of the spin chain to work, other approaches rely on conjectures
regarding the existence of certain limits. Depending on the specific approach one obtains
very different functional equations for the spectral problem and in many cases an efficient
procedure for their solution is still missing.

In this paper, we consider some of these approaches in a simpler setting to better understand
how they are related and to assess their applicability for the solution of the spectral problem:
the XXZ model with general toroidal boundary conditions is defined by the Hamiltonian

H =
L∑

j=1

[
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + cosh ησ z
j σ z

j+1

]
, σ α

L+1 = K−1σα
1 K, (1.1)

where σα
j , α = x, y, z denote the Pauli matrices for spins 1

2 at site j . The unitary matrix

K ∈ End(C2) determines the boundary conditions. For anti-diagonal K the model is integrable
but has no pseudo vacuum state (see below). It was first solved by means of Baxter’s method
[11] and solutions to the resulting functional equations can be given in terms of the roots of
Bethe ansatz equations.

The integrability of (1.1) is established within the QISM [1] from the Yang–Baxter algebra

R12(λ − μ)T1(λ)T2(μ) = T2(μ)T1(λ)R12(λ − μ). (1.2)

Here the monodromy matrix Tj (λ) is a matrix on the auxiliary linear space Vj with entries
being the generators of the quadratic algebra. The structure constants are arranged in the
R-matrix, Rjk(λ) ∈ End(Vj ⊗ Vk), which itself solves the Yang–Baxter equation

R12(λ − μ)R13(λ − ν)R23(μ − ν) = R23(μ − ν)R13(λ − ν)R12(λ − μ). (1.3)

In this paper, we will use the well-known trigonometric solution for two-dimensional spaces
Vj corresponding to the six-vertex model. In this case a representation of (1.2) is given by
local L-matrices with Ta = Raj ≡ Lj reading

Lj (λ) =
(

sinh(λ)S0
j + cosh(λ)Sz

j S−
j

S+
j sinh(λ)S0

j − cosh(λ)Sz
j

)
. (1.4)

The elements of Lj are operators on a two-dimensional quantum state space of a spin
1
2 , in terms of the Pauli matrices σj they are S0

j = cosh(η/2)I, Sz
j = sinh(η/2)σ z

j and
S±

j = sinh(η/2) cosh(η/2)σ±
j . Using the co-multiplication of the Yang–Baxter algebra new

representations can be constructed from (1.4): the monodromy matrix T (λ) = LL(λ) · · ·L1(λ)

also satisfies (1.2). Note that Lj (λ) (and T (λ)) satisfies

Lj (λ + iπ) = −σ z
0Lj (λ)σ z

0 = −σ z
j Lj (λ)σ z

j , (1.5)

where the subscript 0 denotes the auxiliary space.
Apart from these operator-valued representations there exist 2 × 2 c-number solutions K

to (1.2). Being independent of the spectral parameter λ they satisfy [R(λ),K ⊗ K] = 0. For
the six-vertex R-matrix, this relation has two classes of solutions, namely diagonal or anti-
diagonal twist matrices K. Without loss of generality [12, 13] we restrict our considerations
to

K =
(

e−iφ 0
0 eiφ

)
, K =

(
0 1
1 0

)
(1.6)

with a twist angle φ in the diagonal case.
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As a consequence of (1.2) the transfer matrix t (λ) = tr0[KT (λ)] generates a family of
commuting operators, [t (λ), t (μ)] = 0. Therefore the spin chain Hamiltonian (1.1) which is
obtained from

H = 2 sinh η
∂ ln t (λ)

∂λ

∣∣∣∣
λ= η

2

− L cosh η (1.7)

is integrable.
In the following section, we will first briefly review the existing solutions of the XXZ

model with anti-diagonal twisted boundary conditions followed by two different approaches to
the spectral problem based on (A) the fusion hierarchy of transfer matrices [14] at anisotropies
η = iπ/(p + 1) with integer p > 1 and (B) Sklyanin’s method of separation of variables
[3], respectively. In section 3, we study the spectrum of small chains to identify the ground
state and extract the critical properties from the finite size scaling behavior of the ground-state
energy in the massless regime η = iγ with real γ .

2. Solution of the spectral problem for anti-diagonal twist

For a diagonal twist matrix the eigenvalues and eigenstates of the transfer matrix t (λ) can
be obtained by means of the algebraic Bethe ansatz starting from the ferromagnetic so-called
pseudo vacuum with polarized spins,

〈
σ z

j

〉 = 1 (see e.g. [1]). For the anti-diagonal twist matrix

K =
(

0 1
1 0

)
, (2.1)

however, the total magnetization is not a conserved quantum number. As a consequence there
is no simple reference state such as the ferromagnetic one and the algebraic Bethe ansatz
cannot be applied. Instead, a functional equation (called TQ-equation) for the eigenvalues
�(λ) of the transfer matrix has been obtained using Baxter’s method of commuting transfer
matrices [11, 12]

�(λ)q(λ) = sinhL
(
λ +

η

2

)
q(λ − η) − sinhL

(
λ − η

2

)
q(λ + η). (2.2)

This difference equation is solved by

q(λ) =
L∏

j=1

sinh
1

2
(λ − λj ). (2.3)

As a consequence of the analyticity of the transfer matrix eigenvalues it follows that the
rapidities λj are different solutions to the Bethe equations

sinhL
(
λ + 1

2η
)

sinhL
(
λ − 1

2η
) = −

∏
k �=j

sinh 1
2 (λ − λk + η)

sinh 1
2 (λ − λk − η)

, for λ ∈ {λj }Lj=1. (2.4)

(Note that these equations with an extra phase (−1) and any number M � L of rapidities λj

determine the spectrum of a staggered six-vertex model [15]. This case, however, cannot be
obtained from (1.1) with the twist matrices (1.6).) From (1.7) we obtain the corresponding
eigenvalue of the spin chain Hamiltonian (1.1)

E({λj }) = L cosh η + 2
L∑

j=1

sinh η sinh η

2

cosh λj − cosh η

2

. (2.5)

Recently, Galleas [9] has proposed a different approach to solve the spectral problem of
the spin chain with anti-diagonal twist. From the Yang–Baxter algebra he derives a closed set
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of equations for the L − 1 zeroes λ
(1)
k of the eigenvalues �(λ) and a second set of 2(L − 1)

rapidities λ
(2)
� defined to be the zeroes of the matrix element of a certain element of the

Yang–Baxter algebra between the ferromagnetic state and the eigenstate of the model with
twist(

sinh
(
λ

(1)
k + 1

2η
)

sinh η

sinh
(
λ

(1)
k − 1

2η
)

sinh η

)L−1

= −e
2iπr
L

L

2(L−1)∏
�=1

sinh
(
λ

(2)
� − λ

(1)
k

)
sinh

(
λ

(2)
� − 1

2η
)

(2.6)(
sinh

(
λ

(2)
� + 1

2η
)

sinh η

sinh
(
λ

(2)
� − 1

2η
)

sinh η

)L−1

= −e
2iπr
L

L

(
L−1∏
k=1

sinh
(
λ

(1)
k − λ

(2)
�

)
sinh

(
λ

(1)
k − 1

2η
) )2

.

Here r = 0, . . . , 2L − 1 is a quantum number fixing the translational properties of the
corresponding eigenstate. Note that as a consequence of the functional TQ-equation (2.2) λ

(1)
k

are the ‘hole solutions’ λ = λ
(1)
k /∈ {λj }Lj=1 to the Bethe equations (2.4).

The algebraic equations (2.6) involving two sets of rapidities are vaguely reminiscent
of so-called nested Bethe equations for systems with higher rank symmetry. In the present
case, however, the two sets of rapidities are redundant in the sense that—for an eigenstate
with given r—either set can be eliminated in favor of the other one. Also, unlike the string
hypothesis for the Bethe rapidities λj nothing is known about the structure of the solutions of
Galleas’ equations in the thermodynamic limit L → ∞, which would be a prerequisite for
both numerical and analytical studies of large systems.

2.1. Fusion hierarchy and truncation identity at roots of unity

This method was first developed for the RSOS model by Bazhanov et al [14] and was adapted
to spin chains by Nepomechie, e.g. [16, 17]. Unfortunately this method only works if the
values of the crossing parameter are chosen to be roots of unity η = iπ/(p + 1). Nevertheless
as in the periodic case [17] the solution obtained is valid for arbitrary η as it coincides
with (2.2).

Because of the Yang–Baxter algebra higher spin transfer matrices of the XXZ spin chain
obey a so-called fusion hierarchy, i.e. it is possible to construct a higher spin transfer matrix
out of lower spin transfer matrices directly. A transfer matrix using a spin-j auxiliary space is
constructed using fused L-matrices.

The fused spin-
(
j, 1

2

)
L-matrix for j = 1

2 , 1, 3
2 , . . . is given by [17–19]

L〈1···2j〉2j+1(λ) = P +
1,...,2jL1,2j+1(λ)L2,2j+1(λ + η) · · ·L2j,2j+1(λ + (2j − 1)η)P +

1,...,2j , (2.7)

where P + is the projector defined by the sum over all permutation operators for n spin- 1
2 spaces

P +
1,...,n = 1

n!

∑
σ

Pσ . (2.8)

In the same way the fusion of the twist matrix (2.1) is carried out yielding the spin-j
representation

K〈1···2j〉 = P +
1,...,2jK1K2 · · · K2jP

+
1,...,2j . (2.9)

The fused monodromy matrix for the chain then reads for L lattice sites of the original
Hamiltonian (1.1)

T〈1···2j〉(λ) = L〈1···2j〉,L(λ) · · ·L〈1···2j〉,1(λ) (2.10)

and tracing out the auxiliary space gives the associated transfer matrix

t (j)(λ) = tr1···2jK〈1···2j〉T〈1···2j〉(λ). (2.11)

4
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For these transfer matrices the following fusion hierarchy with j = 1
2 , 1, 3

2 , . . . holds
[17, 19–21]:

t (j+1/2)(λ) = t (j)(λ)t (1/2)(λ + 2jη) − (dqT )(λ + (2j − 1)η)t(j−1/2)(λ), (2.12)

where t (1/2)(λ) ≡ t (λ) and t (0)(λ) ≡ I .
On the other hand, fused transfer matrices can be constructed using quantum-group theory

[16, 22]. The L-matrices of higher auxiliary spins from quantum-group constructions have a
simple direct relation to an L-matrix with lower auxiliary spin at roots of unity η = iπ/(p + 1)

with p being an integer number. It is also possible to relate the quantum-group L-matrices to
those constructed via fusion. Resulting in the identity at roots of unity

B1,...,p+1A1,...,p+1L〈1···p+1〉,p+2(λ)A−1
1,...,p+1B

−1
1,...,p+1

= μ(λ)

⎛⎝ν(λ)σ z

B1,...,p−1A1,...,p−1L〈1···p−1〉,p(λ + η)A−1
1,...,p−1B

−1
1,...,p−1

−ν(λ)σ z

⎞⎠ ,

(2.13)

where the entries of matrix A are unnormalized Clebsch–Gordon coefficients in the
decomposition of the tensor product of 2j spin-1/2 representations into a direct sum of SU(2)
irreducible representations and the matrix B is a diagonal matrix needed for symmetrizing
[16].

The function μ(λ) is related to the quantum determinant

(dqT )(λ − η) = −(−μ(λ))L (2.14)

μ(λ) ≡ − sinh
(
λ + 1

2η
)

sinh
(
λ − 3

2η
)

(2.15)

and ν(λ) ≡ −μ(λ)−1(i/2)p sinh
(
(p + 1)

(
λ − 1

2η
))

is related to the crossing parameter via p.
The fused twist matrices themselves obey a truncation identity similar to (2.13).

Under the fusion procedure an anti-diagonal matrix with only 1s as entries remains anti-
diagonal with 1s as entries after applying the transformation of the appropriate Clebsch–
Gordon matrix and omitting null rows and columns, hence

A1,...,2jK〈1···2j〉A−1
1,...,2j =

⎛⎝ 1
A1,...,2j−2K〈1···2j−2〉A−1

1,...,2j−2

1

⎞⎠ . (2.16)

Identities (2.13) and (2.16) together give a truncation identity for the product of twist and
monodromy matrix

B1,...,p+1A1,...,p+1KT〈1···p+1〉,p+2(λ)A−1
1,...,p+1B

−1
1,...,p+1

= μ(λ)L

⎛⎝ (−ν(λ))LF

B1,...,p−1A1,...,p−1KT〈1···p−1〉,p(λ + η)A−1
1,...,p−1B

−1
1,...,p−1

ν(λ)LF

⎞⎠
(2.17)

with F ≡ ∏L
j=1 σ z

j , and accordingly for the transfer matrix by taking the trace of (2.17)

t (p+1)/2(λ) = −(dqT )(λ − η)(−1)Lt(p−1)/2(λ + η). (2.18)

The fusion hierarchy (2.12) together with the truncation identity (2.18) leads to a functional
relation for the transfer matrix at roots of unity for a given p, e.g. for p = 2 or j = 1 respectively
this relation is

t (λ)t (λ + η)t (λ + 2η) − (dqT )(λ)t (λ + 2η) + (dqT )(λ + η)t (λ)

+ (−1)L(dqT )(λ − η)t (λ + η) = 0. (2.19)

5
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Like in the RSOS model [14] or the periodic XXZ chain [17] the goal is to recast the
general form of the functional relation (2.19) as a determinant of a certain matrix. This
determinant being zero ensures the existence of a null eigenvector which leads to equations
similar to TQ-equations.

In the case of an anti-diagonal K-matrix the functional relation found above cannot be
recast directly, though multiplying it with itself shifted by iπ = (p + 1)η results in a recastable
expression. For general p this is a determinant of a (2p + 2) × (2p + 2) matrix reading with
the eigenvalue � of the transfer matrix t

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0 h0 0 · · · 0 −(−1)Nh1

−h2 �1 h1 0

0 −h3 �2
. . .

...

...
. . .

. . . 0
0 −h2p+1 �2p h2p

(−1)Nh2p+1 0 · · · 0 −h0 �2p+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0. (2.20)

In the above expression we used the shorthand

�k ≡ �(λ + kη) (2.21)

hk ≡ sinhL

(
λ + kη − η

2

)
. (2.22)

The definition of hk directly reveals hk = (−1)Lhp+1+k . This and the periodicity of the
eigenvalue �k = −(−1)L�p+1+k following from (1.5) are needed to verify the equivalence of
the determinant and the product of functional relations.

Let (q0, q1, . . . , q2p+1) be the null eigenvector of the matrix, this yields the equations

�0q0 + h0q1 − (−1)Lh1q2p+1 = 0

−hk+1qk−1 + �kqk + hkqk+1 = 0 for k = 1, . . . , 2p (2.23)

(−1)Lh2p+1q0 − h0q2p + �2p+1q2p+1 = 0.

Using the ansatz qk = q(λ + kη) with

q(λ) =
L∏

j=1

sinh
1

2
(λ − λj ) (2.24)

equations (2.23) imply only a single TQ-equation

�(λ)q(λ) = sinhL
(
λ + 1

2η
)
q(λ − η) − sinhL

(
λ − 1

2η
)
q(λ + η) (2.25)

agreeing with (2.2) and leading to the same Bethe ansatz equations (2.4). Note the 2π i
periodicity of the q-function arising from the 2(p + 1) rows of the matrix in (2.20) and the
product in (2.24) running up to L due to the structure of the upper right and lower left entries.

2.2. Separation of variables

In this section, we carry out the procedure of separation of variables, generalizing Sklyanin’s
result for the XXX chain [3].

We modify our definition of the monodromy matrix by introducing inhomogeneities δj

T (λ) = LL(λ − δL) · · ·L1(λ − δ1). (2.26)

6
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Later we will discuss the limit δj → 0. We employ the usual notation for the elements of the
twisted monodromy matrix(

A(λ) B(λ)

C(λ) D(λ)

)
= KT (λ). (2.27)

The Yang–Baxter algebra contains the commutation relation

[B(λ), B(μ)] = 0. (2.28)

It is therefore reasonable to assume that there exists a complete set of λ-independent
eigenvectors |�〉 of B(λ). Note that this does not follow from the commutativity since we have
not shown yet that B(λ) is diagonalizable. By induction in L we show that in the standard basis
D(λ) is lower triangular with all diagonal entries equal to zero, and B(λ) is lower triangular
with diagonal entries

sinh
(
λ − x�

1

) · · · sinh
(
λ − x�

L

)
where x�

j = δj ± η

2
. (2.29)

This shows that B(λ) is indeed diagonalizable, provided the inhomogeneities δj are mutually
distinct, and that its eigenvalues are given by

B(λ)|�〉 = sinh
(
λ − x�

1

) · · · sinh
(
λ − x�

L

)|�〉. (2.30)

In other words, we have defined operator-valued zeroes x̂j of B(λ)

B(λ) = sinh(λ − x̂1) · · · sinh(λ − x̂L), (2.31)

where x̂j = diag
(
xj

1, . . . , x2L

j

)
in the eigenbasis of B(λ). Since the joint spectrum of the

operators x̂j is not degenerate, any eigenvector |�〉 is completely determined by its eigenvalues
x�

1, . . . , x
�
L. We interpret the set of eigenvalues

(
x�

1, . . . , x
�
L

)
of a given eigenvector |�〉 as a point

in C
L. Then the Hilbert space of the spin chain is isomorphic to the space of complex-valued

functions on the set X ⊂ C
L of these points (for this reason the separation of variables method

is also called ‘functional Bethe ansatz’). In this picture x̂j are the operators of multiplication
by the coordinate functions xj in C

L:

x̂j f = xjf, (x̂j f )(x�) = x�
j f (x�) (2.32)

for any function f on X. In the following, we shall not distinguish between the operators x̂j

and the functions xj .
We want to formulate the spectral problem for the twisted transfer matrix in the diagonal

basis of the operators xj . To this end, we first define the ‘conjugated momenta’ X±
j to the

‘coordinates’ xj , which we obtain from A(λ) and D(λ) by substituting λ = xj ‘from the left’

〈�|X−
j |m〉 = 〈�|A(x�

j

)|m〉 and 〈�|X+
j |m〉 = 〈�|D(x�

j

)|m〉. (2.33)

The following commutation relations hold, which can be shown in the same way as for the
XXX case [3]:

[xj , xk] = 0, (2.34)

X±
j xk = (xk ± ηδjk)X

±
j , (2.35)[

X±
j , X±

k

] = 0, (2.36)[
X+

j , X−
k

] = 0 for j �= k, (2.37)

X±
j X∓

j = �

(
xj ± η

2

)
, (2.38)

7
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where �(λ) is the quantum determinant of the twisted monodromy matrix

�(λ) = A

(
λ +

η

2

)
D

(
λ − η

2

)
− B

(
λ +

η

2

)
C

(
λ − η

2

)

= −
⎡⎣ L∏

j=1

sinh(λ − δj + η) sinh(λ − δj − η)

⎤⎦ I. (2.39)

These commutation relations largely fix the action of the conjugated momenta X±
j on the

eigenvectors of the operators xj . The remaining freedom is due to the fact that the xj -
eigenvectors are determined only up to phase factors [theorem 3.4] [3]. (In the functional
language changing these phase factors corresponds to multiplying all functions with an
arbitrary function which has no zeroes.) We will now reconstruct the conjugated momenta
from the commutation relations. This will allow us to formulate the spectral problem for the
twisted transfer matrix in the xj -eigenbasis without knowing the change of bases explicitly.
Let ω be the function ω ≡ 1 on X, and define the functions �±

j by

�±
j (x) = (

X±
j ω

)
(x). (2.40)

Equation (2.35) implies(
X±

j f
)
(x) = �±

j (x)f
(
E±

j x
)

(2.41)

for any function f on X. Here we have introduced the shift operators E±
j

E±
j : (x1, . . . , xj , . . . , xL) �−→ (x1, . . . , xj ± η, . . . , xL). (2.42)

As the functions f are defined only on X,

�±
j (x) = 0 whenever E±

j x /∈ X (2.43)

must hold. The commutation relations (2.36)–(2.38) translate into the following conditions
on the functions �±

j :

�±
j (x)�±

k

(
E±

j x
) = �±

k (x)�±
j

(
E±

k x
)
, (2.44)

�+
j (x)�−

k

(
E+

j x
) = �−

k (x)�+
j

(
E−

k x
)

for j �= k, (2.45)

�±
j (x)�∓

j

(
E±

j x
) = �

(
xj ± η

2

)
. (2.46)

We make the following ansatz: let the functions �±
j be defined as

�±
j (x) = �±(xj ), (2.47)

where

�±(λ) = ξ± sinh

(
λ − δ1 ∓ η

2

)
· · · sinh

(
λ − δL ∓ η

2

)
. (2.48)

In this definition, the constants ξ± are an arbitrary factorization of the determinant of the twist
matrix

ξ+ξ− = det(K) = −1, (2.49)

and the functions �± factorize the quantum determinant of the monodromy matrix in the
following sense:

�+

(
δj − η

2

)
�−

(
δj +

η

2

)
= �(δj ). (2.50)

This ansatz satisfies the conditions given in equations (2.43)–(2.46).
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We now return to the spectral problem for the twisted transfer matrix

t (λ)q(x) = �(λ)q(x). (2.51)

The eigenvector q is in our representation a complex-valued function on X. We substitute
λ = xj from the left and obtain

�(xj )q(x) = �+(xj )q
(
E+

j x
)

+ �−(xj )q(E−
j x). (2.52)

The coefficients �± now depend on only one coordinate xj . This is due to the particular
solution �±

j to conditions (2.43)–(2.46) chosen in equations (2.47)–(2.49), for a generic
solution it would not have been the case. The last equation (2.52) suggests the separation of
variables ansatz

q(x) = qL(xL) · · · q1(x1). (2.53)

It remains to solve a set of one-dimensional problems

�(xj )qj (xj ) = �+(xj )qj (xj + η) + �−(xj )qj (xj − η), j = 1, . . . , L, (2.54)

which we recognize as the TQ-equation (2.2), evaluated on the discrete lattice X.
Recalling that xj takes the values δj ± η/2 and using �±(δj ± η/2) = 0, we see that the

finite-difference equation (2.54) takes the form of a homogeneous system of linear equations(
�
(
δj + η

2

) −�−
(
δj + η

2

)
−�+

(
δj − η

2

)
�
(
δj − η

2

) )(
qj

(
δj + η

2

)
qj

(
δj − η

2

)) = 0. (2.55)

For a nontrivial solution its determinant has to vanish

�

(
δj +

η

2

)
�

(
δj − η

2

)
= �(δj ), j = 1, . . . , L (2.56)

(we have used equation (2.50)). The eigenvalue �(λ) is of the form

�(λ) = �−L+1 e(−L+1)λ + �−L+3 e(−L+3)λ + · · · + �L−1 e(L−1)λ. (2.57)

The L coefficients �j have to be determined from the L equations (2.56). Each of these
equations defines a quadratic form in the L-dimensional complex space of the coefficients of
�(λ) (see also [10]). These quadratic forms intersect at 2L points, which correspond to the 2L

eigenvalues �(λ). (Note that the eigenvalues of the transfer matrix are non-degenerate for the
anti-diagonal twist. This explains why the method of separation of variables does not suffer
the so-called completeness problem of the algebraic Bethe ansatz. In the case of diagonal
twist matrices the method cannot be applied since the operator B(λ) has only L − 1 zeroes.)

Finally, we want to remove the inhomogeneities δj , which were not present in the original
problem related to the spin chain (1.1). Simply putting them all to zero is not possible since
then equations (2.56) are no longer independent. Instead, we consider the equation

�

(
δ +

η

2

)
�

(
δ − η

2

)
= −sinhL(δ − η) sinhL(δ + η) (2.58)

and its derivatives w.r.t. δ up to order L − 1, evaluated at δ = 0. For small systems we have
verified that this procedure does give the correct eigenvalues �(λ).

3. Finite-size scaling of the ground-state energy

3.1. Solution of the Bethe equations

As an application of the solution of the spectral problem we now study the description of
the ground state in terms of the solutions to the Bethe equations. We start by solving these
equations (2.4) for the complex Bethe rapidities {λj }Lj=1 numerically for small systems.
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r 3

Figure 1. Distribution of the Bethe rapidities λj (•) and the rapidities λ
(1)
j (�) and λ

(2)
j (�) in the

massless regime with η = iπ/4 for two lattice sites.

In the antiferromagnetic massive regime, described by real η, the Bethe rapidities of the
ground states, and only those, are purely imaginary for small system sizes and small values of
η. As the system size grows or for larger values of η two of the rapidities in the ground state
form a single ‘2-string’ of rapidities symmetric to the imaginary axis, λ ± η/2. Computing
the energy of this state one obtains a system size independent contribution. This is the energy
of a domain wall, corresponding to the interfacial tension in the six-vertex model computed
in [11].

Here we concentrate on the massless case, i.e. η = iγ with real γ . In figures 1 and 2 some
results for up to four lattice sites and η = iπ/4 are shown. As a consequence of the periodicity
of the Bethe equations the set {λj + iπ}Lj=1 is also a solution which parametrizes a second state
corresponding to a different eigenvalue (2.2) of the transfer matrix but has the same energy
(2.5). As the lattice size increases, we find that all Bethe rapidities of the two ground states
have imaginary parts 0 or π . Below we will use this observation to study the finite size scaling
behavior of the ground-state energy. For excited states we have not identified such a pattern
which would be necessary for a systematic analysis of the excitation spectrum starting from
the Bethe equations (2.4).

Also shown in figures 1 and 2 are the corresponding solutions to Galleas’ equations (2.6),
i.e. the two sets of rapidities

{
λ

(1)
j

}L−1
j=1 ,

{
λ

(2)
j

}2(L−1)

j=1 and the quantum number r. Galleas’
equations are invariant under separate shifts of the two sets by iπ , therefore each rapidity
appears twice and λ and λ + iπ have to be identified. In this parametrization, the pairs of
degenerate solutions are given by the same rapidities λ

(1)
j and λ

(2)
j , but their values of r differ

by L. Again, the distribution of the roots of (2.6) in the complex plane does not appear to
follow a simple scheme as the system size increases, not even for the ground state. Therefore,
this approach is of limited use only to study the spectrum of long chains.

To proceed, we parametrize Bethe roots corresponding to the ground states as follows: let
μj , j = 1, . . . , m be the real Bethe rapidities and νj , j = 1, . . . , n the real parts of the Bethe
rapidities with imaginary part π . For even system sizes L we have m = n = L/2, for odd
system sizes we have m = (L ∓ 1)/2, n = (L ± 1)/2 for two ground-state configurations.

10
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(a) L = 3, η = iπ )b(4 L = 4, η = iπ/4/

Figure 2. Distribution of the Bethe rapidities λj (•) and the rapidities λ
(1)
j (�) and λ

(2)
j (�) for

the ground state in the massless regime with η = iπ/4 for (a) three lattice sites and (b) four lattice
sites.

We take the logarithm of the Bethe equations (2.4) and obtain

L�(μj ) = 2πIj +
m∑

k=1

�(μj − μk) +
n∑

k=1

�̃(μj − νk), j = 1, . . . , m,

(3.1)

L�(νk) = 2πJk +
m∑

�=1

�̃(νk − μ�) +
n∑

�=1

�(νk − ν�), k = 1, . . . , n,

where

�(λ) = −i ln

[
sinh

(
λ − iγ

2

)
sinh

(
λ + iγ

2

) ] = π + 2 arctan

[
tanh(λ) cot

(
γ

2

)]
,

�(λ) = −i ln

[
sinh

[
1
2 (λ − iγ )

]
sinh

[
1
2

(
λ + iγ

)] ] = π + 2 arctan

[
tanh

(
λ

2

)
cot

(
γ

2

)]
,

�̃(λ) = −i ln

[
sinh

[
1
2 (λ + iπ − iγ )

]
sinh

[
1
2 (λ + iπ + iγ )

] ] = 2 arctan

[
tanh

(
λ

2

)
cot

(
γ

2
+

π

2

)]
.

We have chosen the branch of the logarithm in such a way that the functions �, � and �̃

are monotonically increasing. Here arctan denotes the principal branch of the inverse tangent
taking values between −π/2 and π/2. Our numerical solutions for small chains show that the
Bethe integers Ij and Jk in (3.1) follow a simple pattern: for even system sizes, one ground
state is obtained with

Ij = j − 1 for j = 1, . . . ,
L

2

Jk = k for k = 1, . . . ,
L

2

(3.2)

11
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while for odd L

Ij = j − 1 for j = 1, . . . ,
L + 1

2

Jk = k for k = 1, . . . ,
L − 1

2
.

(3.3)

The second ground state is obtained by interchanging the sets {Ij } and {Jk}.
In the thermodynamic limit we can solve the logarithmic Bethe equations (3.1)

analytically. Rewriting them as

Y (μj ) = Ij , Z(νj ) = Jj (3.4)

with the ‘counting functions’ Y and Z which satisfy Y (−∞) = Z(−∞) = 0 and Y (+∞) = m,

Z(+∞) = n. Assuming that the distributions of the rapidities μj and νj can be described by
continuous densities ρ and σ in the thermodynamic limit they are given by the derivatives of
the counting functions

ρ(λ) = 1

L
Y ′(λ), σ (λ) = 1

L
Z′(λ). (3.5)

The logarithmic Bethe equations become a pair of coupled integral equations

2πρ(λ) = �′(λ) −
∫

dλ′�′(λ − λ′)ρ(λ′) −
∫

dλ′�̃′(λ − λ′)σ (λ′),
(3.6)

2πσ(λ) = �′(λ) −
∫

dλ′�̃′(λ − λ′)ρ(λ′) −
∫

dλ′�′(λ − λ′)σ (λ′)

which can be solved by the Fourier transform, yielding

ρ(λ) = σ(λ) = 1

2γ

1

cosh(λπ/γ )
. (3.7)

Here we have assumed without loss of generality 0 < γ < π . For the ground-state energy per
lattice site in the thermodynamic limit we find with (2.5)

ε∞ = cos γ − sin γ

γ

∫
dλ

cosh(λπ/γ )

2 sin γ

cosh(2λ) − cos γ
. (3.8)

This agrees with the result for the untwisted chain [23], though the distribution of the Bethe
rapidities is different.

3.2. Conformal field theory

The low-energy effective field theory for the XXZ model in the massless regime, −1 < cos γ �
1, is well known to be that of a free boson with compactification radius

√
2πR = √

(π − γ )/π .
Conformal field theory predicts the finite size scaling of the energies of the ground state and
the low-lying excitations [24, 25] for a system with periodic boundary conditions as

Ehh̄(L) = Le∞ − πvF

6L
c +

2πvF

L
(h + h̄) + o(L−1), (3.9)

where e∞ is the energy density in the ground state, which is in our case given by
equation (3.8), and vF = 2π

γ
sin γ is the ‘Fermi’ velocity of elementary excitations in the

system. The universal number c is the central charge of the conformal field theory, for the free
boson it is c = 1.

From the energies appearing in the spectrum (3.9) for a given lattice realization of the
field theory one can identify the operator content of the latter: h and h̄ are the conformal
weights of primary operators of the CFT. By choosing particular boundary conditions one

12
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obtains different sectors of the theory (i.e. certain representations of the global symmetry
group O(2) of the model (1.1)). For diagonal boundary conditions (1.6) with φ = 0 and π/2
the symmetry of the bulk Hamiltonian (1.1) is preserved and the spectrum is given in terms of
the highest weights of two commuting U(1) Kac–Moody algebras. The scaling dimensions of
the primary operators On,m are given in terms of the eigenvalues n of the U(1) charge operator
1
2

∑
j σ z

j and momentum 2πm/L by

xn,m = hn,m + h̄n,m = πR2n2 +
m2

4πR2
(3.10)

(m takes integer (half odd integer) values for φ = 0 (φ = π/2)). A diagonal twist (1.6) with
angle φ �= 0, π/2 breaks the global symmetry to SO(2). The dimensions of primary operators
are xn,m+φ/π . As a consequence the finite size scaling of the lowest energy state energy is
changed to EGS(L) = Le∞ − πvF ceff/6L with an effective central charge [26]

ceff = 1 − 12x0,φ/π = 1 − 6φ2

π(π − γ )
, |φ| � π

2
. (3.11)

In the case of anti-diagonal twisted boundary conditions the O(2) bulk symmetry is
broken to Z2 ⊗ Z2 with the factors being generated by rotation around the z-axis by π and a
global spin flip, respectively. The low-energy spectrum is that of a U(1)-twisted Kac–Moody
algebra without conserved charge. In this case the conformal weights are [13]

(h, h̄)k1,k2 =
(

(4k1 + 1)2

16
,
(4k2 + 1)2

16

)
(3.12)

with integer ki .
We have solved the Bethe equations (3.1) for the ground state of the spin chain numerically

for system sizes up to L = 500. From (3.12) we expect the lowest energy state to be that with
conformal weights (h, h̄)0,0 = (

1
16 , 1

16

)
for both even and odd number of lattice sites. With

(3.9) this leads to the CFT prediction for the finite size scaling of the energy

EGS(L) = Lε∞ +
πvF

6L

(
−1

2
+ 12

(
1

16
+

1

16

)
+ R(L)

)
, lim

L→∞
R(L) = 0. (3.13)

The resulting effective central charge ceff = −1/2 is independent of the anisotropy which
agrees nicely with our numerical data presented in table 1. In the isotropic limit of the XXZ
model, γ → 0, the spectrum depends only on the eigenvalues of the twist matrix (2.1) and
therefore the anti-diagonal twist is unitary equivalent to a diagonal one with twist-angle π

(3.11).
The corrections R(L) to the scaling (3.13) are a consequence of the fact that the lattice

Hamiltonian (1.1) differs from the conformally invariant Hamiltonian of the continuum theory
by terms involving irrelevant operators [27]. Perturbation of the conformal theory with an
irrelevant operator with scaling dimension x > 2 leads to R(L) ∝ L2−x . Therefore, by
analyzing these corrections in the numerical data one can identify the leading irrelevant
perturbation of the lattice Hamiltonian.

For the periodic XXZ chain and the model with diagonal twist the corrections to scaling
vanish with an exponent x − 2 = max(4γ /(π − γ ), 2) [26, 28]. The Hamiltonian of the
XXZ model with anti-periodic twisted boundary conditions, however, is related to the thermal
operator of the Ashkin–Teller model and the leading corrections to scaling R(L) are generated
by the operator O0,2 [29], i.e.

R(L) ∝ L2−x0,2 = L
− 2γ

π−γ . (3.14)

As shown in figure 3, this provides an excellent fit for our numerical data. The dependence
(3.14) on the anisotropy parameter explains the slow convergence toward ceff in table 1 as
γ → 0.
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Figure 3. Corrections to the scaling of the ground-state energy: closed (open) symbols
are numerical finite size data for even (odd) system sizes, lines are fits to a power law
R(L) ∝ L−2γ /(π−γ ).

Table 1. Finite size scaling of the ground-state energy in systems with even (odd) number of sites
for several values of the anisotropy γ : the numerical results for −ceff = (6/πvF )L(E0(L)−Le∞)

for lattices of size L together with the extrapolation to L = ∞ are shown.

L γ = π/8 γ = π/4 γ = 3π/8 γ = π/2

30 0.595 368 49 0.530 468 83 0.503 672 26 0.500 091 41
60 0.576 446 44 0.519 092 29 0.501 560 60 0.500 022 85

120 0.561 768 71 0.512 005 78 0.500 671 52 0.500 005 71
240 0.550 148 11 0.507 558 93 0.500 295 53 0.500 001 43
480 0.540 840 22 0.504 761 18 0.500 149 93 0.500 000 35
Extrapolation 0.51(2) 0.500(1) 0.5000(1) 0.500 000(1)

29 0.407 815 10 0.469 334 09 0.496 585 70 0.500 097 82
59 0.425 722 31 0.480 794 24 0.498 506 26 0.500 023 63

119 0.439 734 53 0.487 944 14 0.499 348 55 0.500 004 94
239 0.450 889 12 0.492 421 07 0.499 721 06 0.500 001 44
479 0.459 870 07 0.495 231 21 0.499 900 10 0.500 000 36
Extrapolation 0.48(2) 0.499(1) 0.4999(1) 0.500 000(1)

4. Summary and conclusion

For the XXZ spin chain with anti-diagonal twist which does not allow for a solution of the
spectral problem by means of the algebraic Bethe ansatz due to the lack of a reference state
we have derived the functional equations (2.2), originally obtained using Baxter’s method of
commuting transfer matrices, employing different methods: restricting the anisotropy to roots
of unity η = iπ/(p + 1) the TQ-equation of [11] was obtained by truncation of the fusion
hierarchy. In a second approach, namely through Sklyanin’s separation of variables, we have
used a representation of the Yang–Baxter algebra on a space of symmetric functions defined
on a discrete lattice. In this formulation the spectral problem could again be recast in the form
of the same TQ-equation (2.54)—in this case, however, it has to be solved on the lattice of
singular points of this functional equation only. This is unlike the situation for the spin chain
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with open boundaries and non-diagonal boundary fields where different functional equations
have been found within different approaches.

In the lattice formulation of the TQ-equation arising from the separation of variables the
computation of the eigenvalues amounts to finding roots of L coupled polynomial equations
(2.56), therefore this approach appears to be best suited to determine the spectrum of small
systems. A similar limitation holds for the recent approach of Galleas [9]. For an efficient
solution of the TQ-equation in the thermodynamic limit the parametrization (2.3) or (2.24)
of the solution to the functional equations has to be used which leads to L algebraic Bethe
equations (2.4). At least for the ground-state energy of the spin chain these equations can be
solved, e.g. to obtain the interfacial tension of the six-vertex model (see [11]) or to identify
the operator content of the low-energy effective theory in the massless regime.

Note, that together with the eigenvalues �(λ) one obtains the functions q(λ) from the TQ-
equation in either approach. It is quite clear from the separation of variables that these functions
contain the complete information on the eigenstates of the transfer matrix. However, unlike
the situation with the algebraic Bethe ansatz, where one has an expression for the eigenstates
in terms of the generators of the Yang–Baxter algebra, the explicit transformation from the
q-functions to state vectors in the Hilbert space of the spin chain is not known.
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